Joint probability distribution of the invariants comprising determinantal inequalities: Heuristic derivation.

نویسنده

  • J Karle
چکیده

Joint probability distributions are derived that are expressed in terms of the determinants that form the determinantal inequalities associated with the non-negative Fourier series that represent crystal structures. The derivation involves heuristic considerations. It is therefore appropriate to test the distributions extensively by making comparisons with results obtained by other theoretical means and evaluations of the implications of the distributions. Those performed thus far on the low-order determinants (third and fourth orders) have provided satisfactory results. The determinantal probability distributions imply a general maximum determinant rule, contain a wealth of information, and provide numerous paths that may be followed for future development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special phase invariant formulas of higher order: Expected values.

Formulas for the cosines of the higher-order phase invariants that arise in crystal structure analysis are derived as expected values from determinantal joint probability distributions. The values of the cosines of the invariants are expressed in terms of averages over simple functions of known structure factor magnitudes. The formulas are termed "special" to distinguish them from formulas that...

متن کامل

New determinantal formulae for the Casimir operators of inhomogeneous pseudo-unitary Lie algebras and their Inönü-Wigner contractions

For the inhomogeneous pseudo-unitary Lie algebras Iu(p, q) a determinantal method to compute the Casimir operators is given, independently of the traditional analysis of the enveloping algebra. This procedure is extended to contractions of Iu(p, q) isomorphic to an extension by a derivation of the inhomogeneous special pseudo-unitary Lie algebras Isu(p − 1, q), providing an alternative analytic...

متن کامل

Statistical Mechanics and Random Matrices

Statistical Mechanics and Random Matrices 3 1. Introduction 6 2. Motivations 7 3. The different scales; typical results 12 Lecture 1. Wigner matrices and moments estimates 15 1. Wigner's theorem 16 2. Words in several independent Wigner matrices 23 3. Estimates on the largest eigenvalue of Wigner matrices 25 Lecture 2. Gaussian Wigner matrices and Fredholm determinants 27 1. Joint law of the ei...

متن کامل

Inequalities for Numerical Invariants of Sets of Matrices

We prove three inequalities relating some invariants of sets of matrices, such as the joint spectral radius. One of the inequalities, in which proof we use geometric invariant theory, has the generalized spectral radius theorem of Berger and Wang as an immediate corollary.

متن کامل

Determinantal formulae for the Casimir operators of inhomogeneous Lie algebras

Contractions of Lie algebras are combined with the classical matrix method of Gel’fand to obtain matrix formulae for the Casimir operators of inhomogeneous Lie algebras. The method is presented for the inhomogeneous pseudounitary Lie algebras Iu(p, q). This procedure is extended to contractions of Iu(p, q) isomorphic to an extension by a derivation of the inhomogeneous special pseudo-unitary Li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 75 6  شماره 

صفحات  -

تاریخ انتشار 1978